142 research outputs found

    Computer-assisted detection of pulmonary embolism: evaluation of pulmonary CT angiograms performed in an on-call setting

    Get PDF
    Item does not contain fulltextPURPOSE: The purpose of the study was to assess the stand-alone performance of computer-assisted detection (CAD) for evaluation of pulmonary CT angiograms (CTPA) performed in an on-call setting. METHODS: In this institutional review board-approved study, we retrospectively included 292 consecutive CTPA performed during night shifts and weekends over a period of 16 months. Original reports were compared with a dedicated CAD system for pulmonary emboli (PE). A reference standard for the presence of PE was established using independent evaluation by two readers and consultation of a third experienced radiologist in discordant cases. RESULTS: Original reports had described 225 negative studies and 67 positive studies for PE. CAD found PE in seven patients originally reported as negative but identified by independent evaluation: emboli were located in segmental (n = 2) and subsegmental arteries (n = 5). The negative predictive value (NPV) of the CAD algorithm was 92% (44/48). On average there were 4.7 false positives (FP) per examination (median 2, range 0-42). In 72% of studies or=10 FP. CONCLUSION: CAD identified small emboli originally missed under clinical conditions and found 93% of the isolated subsegmental emboli. On average there were 4.7 FP per examination.1 april 201

    Optimization Strategies for Interactive Classification of Interstitial Lung Disease Textures

    Get PDF
    For computerized analysis of textures in interstitial lung disease, manual annotations of lung tissue are necessary. Since making these annotations is labor intensive, we previously proposed an interactive annotation framework. In this framework, observers iteratively trained a classifier to distinguish the different texture types by correcting its classification errors. In this work, we investigated three ways to extend this approach, in order to decrease the amount of user interaction required to annotate all lung tissue in a computed tomography scan. First, we conducted automatic classification experiments to test how data from previously annotated scans can be used for classification of the scan under consideration. We compared the performance of a classifier trained on data from one observer, a classifier trained on data from multiple observers, a classifier trained on consensus training data, and an ensemble of classifiers, each trained on data from different sources. Experiments were conducted without and with texture selection (ts). In the former case, training data from all eight textures was used. In the latter, only training data from the texture types present in the scan were used, and the observer would have to indicate textures contained in the scan to be analyzed. Second, we simulated interactive annotation to test the effects of (1) asking observers to perform ts before the start of annotation, (2) the use of a classifier trained on data from previously annotated scans at the start of annotation, when the interactive classifier is untrained, and (3) allowing observers to choose which interactive or automatic classification results they wanted to correct. Finally, various strategies for selecting the classification results that were presented to the observer were considered. Classification accuracies for all possible interactive annotation scenarios were compared. Using the best-performing protocol, in which observers select the textures that should be distinguished in the scan and in which they can choose which classification results to use for correction, a median accuracy of 88% was reached. The results obtained using this protocol were significantly better than results obtained with other interactive or automatic classification protocols

    Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge

    Get PDF
    Automatic detection of pulmonary nodules in thoracic computed tomography (CT) scans has been an active area of research for the last two decades. However, there have only been few studies that provide a comparative performance evaluation of different systems on a common database. We have therefore set up the LUNA16 challenge, an objective evaluation framework for automatic nodule detection algorithms using the largest publicly available reference database of chest CT scans, the LIDC-IDRI data set. In LUNA16, participants develop their algorithm and upload their predictions on 888 CT scans in one of the two tracks: 1) the complete nodule detection track where a complete CAD system should be developed, or 2) the false positive reduction track where a provided set of nodule candidates should be classified. This paper describes the setup of LUNA16 and presents the results of the challenge so far. Moreover, the impact of combining individual systems on the detection performance was also investigated. It was observed that the leading solutions employed convolutional networks and used the provided set of nodule candidates. The combination of these solutions achieved an excellent sensitivity of over 95% at fewer than 1.0 false positives per scan. This highlights the potential of combining algorithms to improve the detection performance. Our observer study with four expert readers has shown that the best system detects nodules that were missed by expert readers who originally annotated the LIDC-IDRI data. We released this set of additional nodules for further development of CAD systems

    Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial

    Get PDF
    Trials show that low-dose computed tomography (CT) lung cancer screening in long-term (ex-)smokers reduces lung cancer mortality. However, many individuals were exposed to unnecessary diagnostic procedures. This project aims to improve the efficiency of lung cancer screening by identifying high-risk participants, and improving risk discrimination for nodules. This study is an extension of the Dutch-Belgian Randomized Lung Cancer Screening Trial, with a focus on personalized outcome prediction (NELSON-POP). New data will be added on genetics, air pollution, malignancy risk for lung nodules, and CT biomarkers beyond lung nodules (emphysema, coronary calcification, bone density, vertebral height and body composition). The roles of polygenic risk scores and air pollution in screen-detected lung cancer diagnosis and survival will be established. The association between the AI-based nodule malignancy score and lung cancer will be evaluated at baseline and incident screening rounds. The association of chest CT imaging biomarkers with outcomes will be established. Based on these results, multisource prediction models for pre-screening and post-baseline-screening participant selection and nodule management will be developed. The new models will be externally validated. We hypothesize that we can identify 15-20% participants with low-risk of lung cancer or short life expectancy and thus prevent ~140,000 Dutch individuals from being screened unnecessarily. We hypothesize that our models will improve the specificity of nodule management by 10% without loss of sensitivity as compared to assessment of nodule size/growth alone, and reduce unnecessary work-up by 40-50%

    Digital chest radiography: an update on modern technology, dose containment and control of image quality

    Get PDF
    The introduction of digital radiography not only has revolutionized communication between radiologists and clinicians, but also has improved image quality and allowed for further reduction of patient exposure. However, digital radiography also poses risks, such as unnoticed increases in patient dose and suboptimum image processing that may lead to suppression of diagnostic information. Advanced processing techniques, such as temporal subtraction, dual-energy subtraction and computer-aided detection (CAD) will play an increasing role in the future and are all targeted to decrease the influence of distracting anatomic background structures and to ease the detection of focal and subtle lesions. This review summarizes the most recent technical developments with regard to new detector techniques, options for dose reduction and optimized image processing. It explains the meaning of the exposure indicator or the dose reference level as tools for the radiologist to control the dose. It also provides an overview over the multitude of studies conducted in recent years to evaluate the options of these new developments to realize the principle of ALARA. The focus of the review is hereby on adult applications, the relationship between dose and image quality and the differences between the various detector systems

    Bone suppression increases the visibility of invasive pulmonary aspergillosis in chest radiographs

    Get PDF
    Objective: Chest radiographs (CXR) are an important diagnostic tool for the detection of invasive pulmonary aspergillosis (IPA) in critically ill patients, but their diagnostic value is limited by a poor sensitivity. By using advanced image processing, the aim of this study was to increase the value of chest radiographs in the diagnostic work up of neutropenic patients who are suspected of IPA. Methods: The frontal CXRs of 105 suspected cases of IPA were collected from four institutions. Radiographs could contain single or multiple sites of infection. CT was used as reference standard. Five radiologists and two residents participated in an observer study for the detection of IPA on CXRs with and without bone suppressed images (ClearRead BSI 3.2; Riverain Technologies). The evaluation was performed separately for the right and left lung, resulting in 78 diseased cases (or lungs) and 132 normal cases (or lungs). For each image, observers scored the likelihood of focal infectious lesions being present on a continuous scale (0-100). The area under the receiver operating characteristics curve (AUC) served as the performance measure. Sensitivity and specificity were calculated by considering only the lungs with a suspiciousness score of greater than 50 to be positive. Results: The average AUC for only CXRs was 0.815. Performance significantly increased, to 0.853, when evaluation was aided with BSI (p = 0.01). Sensitivity increased from 49% to 66% with BSI, while specificity decreased from 95% to 90%. Conclusion: The detection of IPA in CXRs can be improved when their evaluation is aided by bone suppressed images. BSI improved the sensitivity of the CXR examination, outweighing a small loss in specificity

    Automated assessment of COVID-19 reporting and data system and chest CT severity scores in patients suspected of having COVID-19 using artificial intelligence

    Get PDF
    Background: The coronavirus disease 2019 (COVID-19) pandemic has spread across the globe with alarming speed, morbidity, and mortality. Immediate triage of patients with chest infections suspected to be caused by COVID-19 using chest CT may be of assistance when results from definitive viral testing are delayed.Purpose: To develop and validate an artificial intelligence (AI) system to score the likelihood and extent of pulmonary COVID-19 on chest CT scans using the COVID-19 Reporting and Data System (CO-RADS) and CT severity scoring systems.Materials and Methods: The CO-RADS AI system consists of three deep-learning algorithms that automatically segment the five pulmonary lobes, assign a CO-RADS score for the suspicion of COVID-19, and assign a CT severity score for the degree of parenchymal involvement per lobe. This study retrospectively included patients who underwent a nonenhanced chest CT examination because of clinical suspicion of COVID-19 at two medical centers. The system was trained, validated, and tested with data from one of the centers. Data from the second center served as an external test set. Diagnostic performance and agreement with scores assigned by eight independent observers were measured using receiver operating characteristic analysis, linearly weighted kappa values, and classification accuracy.Results: A total of 105 patients (mean age, 62 years +/- 16 [standard deviation]; 61 men) and 262 patients (mean age, 64 years +/- 16; 154 men) were evaluated in the internal and external test sets, respectively. The system discriminated between patients with COVID-19 and those without COVID-19, with areas under the receiver operating characteristic curve of 0.95 (95% CI: 0.91, 0.98) and 0.88 (95% CI: 0.84, 0.93), for the internal and external test sets, respectively. Agreement with the eight human observers was moderate to substantial, with mean linearly weighted k values of 0.60 +/- 0.01 for CO-RADS scores and 0.54 +/- 0.01 for CT severity scores.Conclusion: With high diagnostic performance, the CO-RADS AI system correctly identified patients with COVID-19 using chest CT scans and assigned standardized CO-RADS and CT severity scores that demonstrated good agreement with findings from eight independent observers and generalized well to external data. (C) RSNA, 2020Cardiovascular Aspects of Radiolog
    • …
    corecore